The morphology of α' martensite in a two-phase ($\alpha + \gamma$) Fe-Cr-Ni stainless steel

K. WAKASA

Department of Metallurgical Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan

T. NAKAMURA

Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan

Both α' lath-shaped and ϵ martensites are induced by tensile deformation within γ of a two-phase ($\alpha + \gamma$) Fe--Cr--Ni stainless steel. α' forms from the γ through the ϵ at an intersection of two ϵ crystals. These are observed both when γ is surrounded by γ and when γ borders α . The amount of strain at which both ϵ and α' nucleate, increases with test temperatures in the range -196 to 50° C. Adjacent α' laths are either twin-related, or 5, 9, 15 or 19° off the twin relationship, as found by analysing electron diffraction patterns.

1. Introduction

In metastable austenitic Fe-Cr-Ni stainless steels such as Fe-18 Cr-8 Ni, Fe-18 Cr-12 Ni and Fe-17 Cr-9 Ni, the martensite transformation to ϵ (h c p) and α' (b c c) martensites occurs during straining or on cooling [1-9]. α' is a lath-shaped martensite within γ , forming from γ and ϵ [5–8]. The lath is also observed at both the intersection of two ϵ crystals and the site where ϵ meets a grain boundary [9-11]. In these cases, the orientation relationship between the γ and the lath is frequently found to be the Kurdumov-Sachs relationship [5-11]. A packet martensite consists of a bundle of these laths, and these laths have small angle boundaries [12-14]. The formation of these laths affects the mechanical properties of Fe-Cr-Ni alloys [15-17]. In the present study, the occurrence of α' is detected in the γ phase of a two-phase ($\alpha + \gamma$) Fe-Cr-Ni stainless steel by transmission electron microscopy (TEM), the orientation relationships between adjacent α' crystals being examined by electron diffraction.

2. Experimental procedure

A two-phase $(\alpha + \gamma)$ Fe-Cr-Ni stainless steel (composition (wt%); Cr 24.2 and Ni 3.36 in the ferrite (α), and Cr 19.7 and Ni 5.90 in the austenite (γ)) was used. The size of the specimen, which was cut parallel to a rolling direction. was 2.0 mm x $6.0 \,\mathrm{mm} \times 18.0 \,\mathrm{mm}$. The specimens were annealed by sealing them in a quartz tube, evacuating to about 10^{-4} mm Hg pressure, heating for 1 h at 100° C and then furnace-cooling to room temperature. The specimens were found to contain 52% by volume of the γ phase and have a mean grain size of $8\,\mu\text{m}$. The temperature at which the α' martensite transformation first started in cooling. $Ms^{\alpha'}$. was measured as approximately -196° C. Md, which was defined as the highest temperature where α' was detected in a fracture specimen, was about −24° C.

Tensile deformation was carried out on an Instron type testing machine at a cross-head speed of 0.5 mm min^{-1} in the temperature range -196 to -24° C. Foils were prepared from specimens deformed to various tensile strains for examination

Figure 1 Transmission electron micrographs of two-phase $(\alpha + \gamma)$ Fe-Cr-Ni stainless steel; (a) bright field image of a γ twin, (b) bright field image of α' .

in the electron microscope, to elucidate both the microstructure of γ twin, α , ϵ and α' , and the orientation relationships between adjacent α' .

3. Results and discussion

3.1. The microstructure of γ and α after tensile deformation

By deforming to 20.0% strain at -150° C, a deformation twin (γ twin) was detected within γ (Fig. 1a), but in all the other γ crystals of the specimen the transformation products were ϵ and α' . By deforming to 5.0% strain at -24° C,

the dislocation formed within the α phase lay on the $\{110\}_{\alpha}$ planes (Fig. 1b). As the amount of strain increased, the distribution of dislocations became gradually inhomogeneous due to the formation of tangles. Fig. 2 shows the transmission electron micrograph of ϵ in a tensile specimen deformed to 5.0% strain at -202° C. The orientation relationship between γ and ϵ was determined to be $(111)_{\gamma} || (0001)_{\epsilon}; [10\overline{1}]_{\gamma} || [11\overline{2}0]_{\epsilon}$, and the small amount $(\sim 1.0\%)$ of ϵ formed was found not to be a stacking fault but a martensitic phase with a h c p structure [4, 8, 9, 18]. Fig. 3

Figure 2 Bright field image of ϵ (E) and γ (A) within the γ phase.

Figure 3 The effect of test temperature on the occurrence of the ϵ and the α' phases within the γ phase of the alloy. (• only $\alpha', \circ \epsilon$ and α', \bullet no existence of ϵ and α' .)

Figure 4 Bright field images of the different formation modes of the α' martensites, (a) at the intersection of two ϵ crystals, (b) within the ϵ crystal, and (c) within the γ phase. (A = γ , E = ϵ and M = α').

shows the effect of test temperature on the amount of tensile strain at which ϵ and α' form within the γ during tensile straining. This amount increased with increasing test temperatures from -196 to -72° C. At any tensile strain at above -50° C, ϵ was not detected. The existence of ϵ was not observed in any specimens deformed to greater than 25.0% in the temperature range -196 to -72° C, because ϵ had transformed to α' . As previously described in Section 2, the

 $Ms^{\alpha'}$ temperature was about -196° C. Furthermore, the Ms^{ϵ} , where the occurrence of ϵ was first induced by cooling, was about -196° C. Thus, the *Ms* temperatures detected for ϵ and α' in the present alloy are similar to those previously reported in an Fe-Mn alloy [19, 20].

3.2. The morphology of α' crystal

An optical examination of the morphology in the present alloy shows that it is a lath-shaped martensite [21, 22]. The orientation relationship between γ and α' , which is obtained from analysis of the foils, is found to be the Krudjumov–Sachs relationship noted previously in austenitic Fe–Cr–Ni stainless steel [7–9, 18, 23, 24]. α' occurred at

Figure 5 Bright field image of α' lath.

Figure 6 Typical electron diffraction patterns obtained at the lath boundary; (a) the electron beam directions of $[\bar{3}\,1\,1]_{\alpha}$ and $[\bar{3}\,1\,\bar{1}]_{\alpha}$, (b) $[1\,0\,1]_{\alpha}$ and $[0\,\bar{1}\,1]_{\alpha}$, (c) $[1\,1\,\bar{1}]_{\alpha}$ and $[1\,1\,1]_{\alpha}$, (d) $[1\,1\,0]_{\alpha}$ and $[1\,1\,3]_{\alpha}$, (e) $[1\,1\,1]_{\alpha}$ and $[\bar{1}\,\bar{1}\,\bar{1}]_{\alpha}$, (f) $[1\,0\,2]_{\alpha}$ and $[\bar{1}\,\bar{1}\,\bar{1}]_{\alpha}$, (g) $[1\,1\,1]_{\alpha}$ and $[0\,0\,1]_{\alpha}$, (h) $[0\,0\,1]_{\alpha}$ and $[1\,1\,0]_{\alpha}$.

the intersection of two ϵ crystals, through the ϵ , and from the γ , as shown in Figs. 4a, b and c. They were observed for tensile specimens deformed to 1.1% strain at -196° C, (Fig. 4a), 11.5% strain at -102° C, (Fig. 4b), and 15.5% strain at -196° C, (Fig. 4c), respectively. In (a) and (b), the α' formation was observed for γ which was surrounded by γ . In (c), α' formed directly through γ which was surrounded by γ . At the other test temperatures, namely -150, -72, -50 and -24° C, the morphology of α' was the lath-shaped martensite. It is thus evident from the TEM studies that α' laths are formed in the temperature range -196 to -24° C.

3.3. The orientation relationships between adjacent α' observed by TEM

The occurrence of both a twin-related α' and an off-twin-related α' is expected if the adjacent α' contains the various variants of the Kurdiumov-Sachs relationship [17, 25, 26]. For example, when the relationship is given by $(1 \ 1 \ 1)_{\gamma} \parallel (0 \ 1 \ 1)_{\alpha}$ and $[\overline{1}10]_{\gamma} \| [\overline{1}\overline{1}1]_{\alpha}$, 6 variants are obtained by choosing two different $\langle 1 | 1 \rangle_{\alpha}$ directions to be parallel to each of three $\langle 1 1 0 \rangle_{\gamma}$ directions. Similarly, as each of the $\{1 \mid 1\}_{\gamma}$ is associated with 6 variants, 24 variants are obtained. In case of $(\overline{1}1\overline{1})_{\gamma} \| (110)_{\alpha}$, combinations such as $[101]_{\gamma} \|$ $[\overline{1}1\overline{1}]_{\alpha}$ (1) and $[\overline{1}01]_{\gamma} \| [\overline{1}11]_{\alpha}$ (2); $[0\overline{1}\overline{1}]_{\gamma} \|$ $[\overline{1}11]_{\alpha}$ (3); $[011]_{\gamma} \| [\overline{1}1\overline{1}]_{\alpha}$ (4); $[\overline{1}\overline{1}0]_{\gamma} \|$ $[\overline{1}1\overline{1}]_{\alpha}$ (5) and $[110]_{\gamma} \| [\overline{1}11]_{\alpha}$ (6) indicate a twin relationship, while all the other combinations of variants are not twin relationships.

Fig. 5 shows the transmission electron micrograph of α' in a tensile specimen deformed to 30.0% strain at -196° C. This was a packet martensile of parallel laths of average width 0.11 μ m, each lath having a lath boundary. This implies that specific orientation relationships are detected between adjacent α' . Electron diffraction patterns, indicating their relationships, were thus obtained as shown in Figs. 6a to h. A twin relationship was found in Figs. 6a, b and c, while the orientation relationship, which is a twin relationship to within 5° , was found in 6d. The diffraction spots in Figs. 6a and b were twin-related with respect to twin planes such as $(1 \ 1 \ 2)_{\alpha}$ and $(\overline{1} \ 2 \ 1)_{\alpha}$ respectively. The diffraction patterns of Figs. 6e to h were 9°, 15°, and 19° off twin relationships, respectively. It would appear that both twin and off-twin relationships are required to describe these patterns, and these may be produced from appropriate combinations of Kurdjumov-Sachs variants.

4. Conclusions

(1) α' lath-shaped martensite is formed through both the γ and the ϵ phases and at the intersection of two ϵ crystals within the γ phase of a two-phase $(\alpha + \gamma)$ Fe-Cr-Ni stainless steel. The formation of the α' martensite was apparently independent of the α phase morphology.

(2) The amount of tensile strain, at which the ϵ and the α' formed by tensile deformation, increased with increasing test temperature. ϵ was not detected for specimens which were deformed to greater than 25.0% strain in the temperature range -196 to -72° C, because all the ϵ then transformed completely to α' . At temperatures greater than -50° C, ϵ was not detected, because the $\gamma \rightarrow \alpha'$ martensite transformation occurred directly without the intermediate ϵ phase.

(3) The orientation relationships between adjacent α' laths in a packet martensite may be divided into two classes, namely (i) a twin relationship and (ii) an off-twin relationship.

Acknowledgement

The authors would like to thank Dr A. Sato and Dr Y. Higo of Tokyo Institute of Technology, who read the manuscript and gave valuable comments.

References

- 1. J. GORDEN-PARR, J. Iron and Steel Inst. 171 (1952) 137.
- 2. B. CINA, ibid 177 (1954) 406.
- 3. H. M. OTTE, Acta Met. 5 (1957) 614.
- 4. B. CINA, ibid 6 (1958) 748.
- 5. R. P. REED, *ibid* 10 (1962) 865.
- 6. J. DASH and H. M. OTTE, *ibid* 11 (1963) 1169.
- 7. F. LECROISEY and A. PINEAU, Met. Trans. 3 (1972) 387.
- 8. P. M. KELLY, Acta Met. 13 (1965) 635.
- 9. P. L. MANGONON and G. THOMAS, Met. Trans. 1 (1970) 1577.
- Y. HIGO, F. LECROISEY and T. MORI, Acta Met. 22 (1974) 313.
- 11. K. SIPOS, L. REMY and A. PINEAU, Met. Trans. 7 (1976) 857.
- 12. A. R. MARDER and G. KRAUSS, *Trans. ASM* 60 (1967) 651.
- 13. J. M. MARDER and A. R. MARDER, *ibid* 62 (1969) 1.
- 14. A. R. MARDER and G. KRAUSS, *ibid* 62 (1969) 957.
- 15. T. SWARR and G. KRAUSS, Met. Trans. 7 (1976) 41.
- K. WAKASA and T. NAKAMURA, Scripta Met. 10 (1976) 129.
- 17. Idem, J. Mater. Sci. 12 (1977) 2109.
- 18. J. VENABLES, Phil. Mag. 7 (1962) 35.
- 19. H. SCHÜMANN, Arch. Eisenhüttenw. 38 (1967) 647.
- 20. A. J. GOLDMAN, W. D. ROBERTSON and D. A. KOSS, *Trans. AIME* 230 (1964) 240.
- T. NAKAMURA and K. WAKASA, J. Japan Iron and Steel Inst. 61 (1975) 2067.
- 22. K. WAKASA and T. NAKAMURA, Scripta Met. 9 (1975) 959.
- 23. D. P. DUNNE and C. M. WAYMAN, Met. Trans. 2 (1971) 2327.
- 24. T. MAKI and C. M. WAYMAN, *Met. Trans.* 7A (1976) 1511.
- G. R. SPEICH and P. R. SWANN, J. Iron and Steel Inst. 203 (1965) 480.
- 26. J. M. CHILTON, C. J. BARTON and G. R. SPEICH, *ibid* 209 (1970) 184.
- Received 15 March and accepted 9 September 1977.