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Both  o~' lath-shaped and e martensites are induced by tensile deformation within 3" of a 
two-phase (e + 3") F e - C r - N i  stainless steel. ~' forms from the 3" through the e at an 
intersection of two e crystals. These are observed both when 3" is surrounded by 3' and 
when 3" borders oz. The amount of strain at which both e and c~' nucleate, increases with 
test temperatures in the range --196 to 50 ~ C. Adjacent ~' laths are either twin-related, or 
5, 9, 15 or 19 ~ off the twin relationship, as found by analysing electron diffraction 
patterns. 

1. Introduction 
In metastable austenitic F e - C r - N i  stainless steels 
such as Fe -18  Cr-8  Ni, Fe -18  Cr-12 Ni and F e -  
17Cr-9Ni ,  the martensite transformation to e 
(hcp )  and ~' (b c c) martensites occurs during 
straining or on cooling [1 -9 ] .  ~' is a lath-shaped 
martensite within 7, forming from 3' and e [5 -8 ] .  
The lath is also observed at both the intersection 
of two e crystals and the site where e meets a grain 
boundary [9 -11] .  In these cases, the orientation 
relationship between the 3' and the lath is fre- 
quently found to be the Kurdumov-Sachs 
relationship [5 -11] .  A packet martensite con- 
sists of a bundle of these laths, and these laths 
have small angle boundaries [12-14] .  The for- 
mation of these laths affects the mechanical 
properties of F e - C r - N i  alloys [15-17] .  In the 
present study, the occurrence of ~' is detected in 
the 3' phase of a two-phase (~ + 3') F e - C r - N i  
stainless steel by transmission electron microscopy 
(TEM), the orientation relationships between 
adjacent ~' crystals being examined by electron 
diffraction. 

2. Experimental procedure 
A two-phase (c~ + 3") F e - C r - N i  stainless steel 
(composition (wt%); Cr 24.2 and Ni 3.36 in the 
ferrite (a), and Cr 19.7 and Ni 5.90 in the austenite 
(7)) was used. The size of the specimen, which was 
cut parallel to a roiling direction, was 2.0 m m •  
6.0 m m •  18.0 ram. The specimens were annealed 
by sealing them in a quartz tube, evacuating to 
about 10-4mmHg pressure, heating for l h at 
100 ~ C and then furnace-cooling to room tempera- 
ture. The specimens were found to contain 52% by 
volume of the 3" phase and have a mean grain size 
of  8 #m. The temperature at which the ~' mar- 
tensite transformation first started in cooling, Ms c'', 
was measured as approximate ly--196~ Md, 
which was defined as the highest temperature 
where a '  was detected in a fracture specimen, was 
about --24 ~ C. 

Tensile deformation was carried out on an 
Instron type testing machine at a cross-head speed 
of 0 .5mmmin  -z in the temperature range--196 
to --24 ~ C. Foils were prepared from specimens 
deformed to various tensile strains for examination 
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Figure 1 Transmission electron micrographs of  two-phase (a + 7) F e - C r - N i  stainless steel; (a) bright field image o f  a 
3' twin,  (b) bright field image of  a ' .  

in the electron microscope, to elucidate both the 
microstructure of 7 twin, a, e and a', and the 
orientation relationships between adjacent a'. 

3. Results  and  discussion 
3.1. The microstructure of 7 and (x after 

tensile deformation 
By deforming to 20.0% strain at --150 ~ C, a de- 
formation twin (7 twin) was detected within 7 
(Fig. l a), but in all the other 7 crystals of the 
specimen the transformation products were e 
and a'. By deforming to 5.0% strain at --24 ~ C, 

the dislocation formed within the a phase lay on 
the {1 1 0}a planes (Fig. lb). As the amount of 
strain increased, the distribution of dislocations 
became gradually inhomogeneous due to the for- 
mation of tangles. Fig. 2 shows the transmission 
electron micrograph of e in a tensile specimen 
deformed to 5.0% strain at --202 ~ C. The orien- 
tation relationship between 3' and e was deter- 
mined to be (1 1 1)71[(000 1)e; [1 0]-]71[ [1 1 20]e,  
and the small amount (~ 1.0%) of e formed was 
found not to be a stacking fault but a martensitic 
phase with a h c p  structure [4, 8, 9, 18]. Fig. 3 

Figure 2 Bright field image of  e (E) and 7 (A) within the  

7 phase. 
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Figure 3 The effect of  test  temperature  on the  occurrence 
of  the  e and the  ~' phases within the 7 phase o f  the  ai~3~oy. 
(= only a ' ,  o e and ~' ,  �9 no existence of  e and ~'.) 



Ms ~' temperature was a b o u t - - 1 9 6 ~  Further-  
more, the Ms e, where the occurrence of  e was 
first induced by  cooling, was about - -196~ 
Thus, the Ms temperatures detected for e and oz' 
in the present alloy are similar to those previously 
reported in an F e - M n  alloy [19, 20] .  

3.2. The morphology of ~ '  crystal 
An optical examination of  the morphology in the 

present alloy shows that it is a lath-shaped mar- 
tensite [21, 221. The orientation relationship 
between 7 and o~', which is obtained from analysis 
of  the foils, is found to be the Krudjumov-Sachs  
relationship noted previously in austenitic F e - C r -  
Ni stainless steel [ 7 - 9 ,  18, 23, 24] .  (~' occurred at 

Figure 4 Bright field images of the different formation 
modes of the c~' martensites, (a) at the intersection of two 
e crystals, (b) within the e crystal, and (c) within the 7 
phase. (A = 7, E = e and M = c~'). 

shows the effect of  test temperature on the 
amount  of  tensile strain at which e and a '  form 
within the 7 during tensile straining. This amount  
increased with increasing test temperatures from 
--196 to - -72  ~ C. At  any tensile strain at above 
- -50  ~ C, e was not  detected.  The existence of  e 
was not  observed in any specimens deformed to 

greater than 25.0% in the temperature range 
--196 to - -72  ~ C, because e had transformed to 
a ' .  As previously described in Section 2, the Figure 5 Bright field image of a'  lath. 
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Figure 6 Typical electron diffraction patterns obtained at the lath boundary; (a) the electron beam directions of 
[31 1]a and [3 1 1]a, (b) [1 0 1]a and [0 r 1]c~, (c) [1 1 i]a and [1 1 1]a, (d) [1 10]a and [1 1 3]a, (e) [1 1 1]a and 
[1 i 31a, (f) [1 0 2]a and [1 11 ]c~, (g) [1 1 1 ]a and [0 0 1] a, (h) [0 01 ]a and [1 1 0]a. 

the intersection of  two e crystals, through the e, 
and from the 7, as shown in Figs. 4a, b and c. 
They were observed for tensile specimens deformed 
to 1.1% strain at --196 ~ C, (Fig. 4a), 11.5% strain 
at - -102~ �9 (Fig. 4b), and 15.5% strain at 
--196 ~ C, (Fig. 4c), respectively. In (a) and (b), the 
a '  formation was observed for 3' which was sur- 
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rounded by 7. In (c), a '  formed directly through 
7 which was surrounded by 7. At the other test 
temperatures, namely --150, - - 7 2 , - - 5 0  and 
--24 ~ C, the morphology of  a '  was the lath-shaped 
martensite. It is thus evident from the TEM studies 
that a '  laths are formed in the temperature range 
--196 to --24 ~ C. 



3.3. The orientation relationships between 
adjacent e' observed by TEM 

The occurrence of both a twin-related a' and an 
off-twin-related a '  is expected if the adjacent ~' 

contains the various variants of  the Kurd jumov-  
Sachs relationship [17, 25, 26].  For example, 
when the relationship is given by (1 1 1)~[1 (0 1 1)a 
and []- 1 0]~11 []-]" 1]~, 6 variants are obtained by 
choosing two different (1 1 1)a directions to be 
parallel to each of  three (1 1 0)~/directions. Simi- 
larly, as each of  the {1 1 1 }~ is associated with 6 
variants, 24 variants are obtained. In case of  
(1 1 1)vii (1 1 0)a, combinations such as [1 0]'_]~11 
[1 1 1]~ (1) and []-01]~11[]-1 1]~ (2); [011]~11 
[]-11]~ (3); [011]w111111]~ (4); [110]~11 
[1 1 1]a (5) and [1 1 0 ] , r l l [ ] l  1]o~ (6) indicate a 
twin relationship, while all the other combinations 
of  variants are not  twin relationships. 

Fig. 5 shows the transmission electron micro- 
graph of  a '  in a tensile specimen deformed to 
30.0% strain at --196 ~ C. This was a packet mar- 
tensile of  parallel laths of  average width 0.11/~m, 
each lath having a lath boundary. This implies that 
specific orientation relationships are detected be- 
tween adjacent a ' .  Electron diffraction patterns, 
indicating their relationships, were thus obtained 
as shown in Figs. 6a to h. A twin relationship was 
found in Figs. 6a, b and c, while the orientation 
relationship, which is a twin relationship to within 
5 ~ was found in 6d. The diffraction spots in Figs. 
6a and b were twin-related with respect to twin 
planes such as (1 1 2)~ and (]-2 1)a respectively. 
The diffraction patterns of  Figs. 6e to h were 9 ~ 
15 ~ and 19 ~ off  twin relationships, respectively. It 
would appear that both twin and off-twin relation- 
ships are required to describe these patterns, and 
these may be produced from appropriate com- 
binations of  Kurdjumov-Sachs variants. 

4. Conclusions 
(1) a '  lath-shaped martensite is formed through 
both the 7 and the e phases and at the intersection 
of  two e crystals within the 3' phase of  a two-phase 
(a + 3') F e - C r - N i  stainless steel. The formation 
of  the a '  martensite was apparently independent 
of  the a phase morphology. 

(2) The amount of  tensile strain, at which the e 
and the a '  formed by tensile deformation, increased 
with increasing test temperature, e was not 
detected for specimens which were deformed to 
greater than 25.0% strain in the temperature range 
--196 to --72 ~ C, because all the e then trans- 

formed completely to a ' .  At temperatures greater 
than - -50"C,  e was not detected, because the 
3, -+ a '  martensite transformation occurred directly 
without the intermediate e phase. 

(3) The orientation relationships between ad- 
jacent a '  laths in a packet martensite may be 
divided into two classes, namely (i) a twin relation- 
ship and (ii) an off-twin relationship. 
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